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ABSTRACT
BACKGROUND: Globally, there are more than 25 licensed antipsychotic medications. Antipsychotics are commonly
described as either typical or atypical, but this dichotomous classification does not reflect the diversity of their
pharmacological and clinical profiles. There is a need for a data-driven antipsychotic classification scheme suitable
for clinicians and researchers that maps onto both pharmacological and clinical effects. Receptor affinity provides
one starting point for such a scheme.
METHODS: We analyzed affinities of 27 antipsychotics for 42 receptors from 3325 in vitro receptor binding studies.
We used a clustering algorithm to group antipsychotics based on receptor affinity. Using a machine learning model,
we examined the ability of this grouping to predict antipsychotic-induced clinical effects quantified according to an
umbrella review of clinical trial and treatment guideline data.
RESULTS: Clustering resulted in 4 groups of antipsychotics. The predominant receptor affinity and clinical effect
“fingerprints” of these 4 groups were defined as follows: group 1, muscarinic (M2–M5) receptor antagonism
(cholinergic and metabolic side effects); group 2, dopamine (D2) partial agonism and adrenergic antagonism
(overall low side-effect burden); group 3, serotonergic and dopaminergic antagonism (overall moderate side-effect
burden); and group 4, dopaminergic antagonism (extrapyramidal side effects and hyperprolactinemia). Groups 1
and 4 were more efficacious than groups 2 and 3. The classification was shown to predict out-of-sample clinical
effects of individual drugs.
CONCLUSIONS: A receptor affinity–based grouping not only reflects compound pharmacology but also detects
meaningful clinical differences. This approach has the potential to benefit both patients and researchers by
guiding treatment and informing drug development.

https://doi.org/10.1016/j.biopsych.2023.04.004
Psychotropic agents have traditionally been classified based
on clinical indication (1). In the case of antipsychotics, the
drugs used to treat schizophrenia and related psychoses, this
classification has also mapped onto a shared pharmacological
mechanism of dopamine D2 receptor antagonism, which is
tightly linked to clinical efficacy (2–4).

Despite sharing a common dopaminergic mechanism of
action, there are significant differences between antipsychotic
agents in terms of their broader pharmacological and clinical
effects, both in terms of efficacy and tolerability (5–7). Early
attempts to provide a more granular classification of antipsy-
chotics have used an atypical/typical or (almost identical) first-/
second-generation dichotomy (8). While initially proposed to
reflect mechanistic differences, it has subsequently become
clear that the compounds within these categories shared
neither common pharmacological nor clinical profiles (9). The
subsequent development of a neuroscience-based nomen-
clature (NbN) was motivated, in part, to address this short-
coming (9,10). The NbN approach categorizes compounds by
clinical indication and a summarized receptor profile. However,
this process relies, to some extent, on expert judgment and
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involves a simplification of the highly diverse pharmacology of
this group of compounds. Although simplification may be
necessary when developing a system that can be applied
across the pharmacopoeia, it has the potential to obscure
important similarities and differences between drugs.

There are large interindividual differences in antipsychotic
response, and many patients switch antipsychotics multiple
times before finding one that is both well tolerated and effec-
tive (11–13). There is currently no grouping of antipsychotics to
help guide clinicians and patients in their choice of initial or
subsequent drug. For patients whose psychotic symptoms
have not improved adequately with first-line treatment or who
are experiencing side effects, clinical guidelines recommend
switching to a different antipsychotic but give little guidance on
which drug to select (14,15). Even when there is guidance, it is
typically limited to switching between atypical/typical agents,
which does not clearly reflect pharmacological profile or clin-
ical effects (i.e., efficacy and side-effect profiles) (14). Thus, a
classification system that facilitates a switch to a second-line
agent with a distinct pharmacological mechanism of action
may improve chances of treatment response and/or
f Biological Psychiatry. This is an open access article under the
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tolerability. Recognizing that antipsychotics with similar re-
ceptor binding profiles share similar clinical effect profiles may
also help drug development. For example, dopamine receptor
partial agonists have been heralded for their relatively more
benign metabolic side-effect profiles (16); however, in a recent
network meta-analysis ranking antipsychotics based on their
associated metabolic side effects, ziprasidone and its struc-
tural analog lurasidone (both dopamine receptor antagonists)
were grouped with the partial agonists as superior agents (5).
Comprehensively understanding patterns of pharmacological
similarity across compounds may support initiatives to develop
safer and more tolerable treatments.

A systematic synthesis of the pharmacology of antipsy-
chotic medication is made possible by the availability of a high
number of receptor binding studies covering a wide range of
receptor types (17). These studies enable the construction of a
receptor “fingerprint” for individual antipsychotics. In this
article, we synthesize the results of all relevant receptor bind-
ing studies to derive a receptor fingerprint for each antipsy-
chotic. We then apply an unbiased clustering algorithm to
group antipsychotics with similar profiles before developing a
machine learning model that uses receptor profiles to predict
clinical effects. We find that receptor profile–defined groupings
show limited overlap with existing classification schemes and
map well to clinical effects.
METHODS AND MATERIALS

Overview

We performed a comprehensive search for antipsychotic re-
ceptor affinities. We then clustered antipsychotics based on
the similarity of their receptor profiles. We next characterized
these receptor-defined clusters in terms of their receptor af-
finities and clinical profiles. Finally, we compared the ability of
these clusters to predict clinical effects and compared this with
existing methods of categorizing antipsychotics.

Determining Receptor Affinities

As in previous work (18), receptor affinities for all antipsy-
chotics were obtained if both receptor binding affinities [from
the National Institute of Mental Health Psychoactive Drug
Screening Program database, https://pdsp.unc.edu/
databases/kiDownload/ (17)] and clinical effects [reported in
a recent meta-analysis (6)] were available. Only data from
studies that reported binding to human tissue were included. A
receptor was included in the analysis if data were available for
at least 5 separate drugs. Antipsychotic drugs were included in
the subsequent analysis if data were available for at least 5
separate receptors. In both cases, the criterion of a minimum
of 5 data points was used to avoid scenarios in which drugs or
receptors with minimal data could have undue influence upon
subsequent analyses. Receptors were removed if Ki values
were identical for all drugs because, in this scenario, the re-
ceptor Ki values supply no useful information for subsequent
analyses. If multiple studies existed for the same receptor and
drug, then the median value was calculated and used in sub-
sequent analyses. The median was used instead of the mean
due to its greater robustness against the influence of outliers.
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Finally, Ki values were converted to pKi values as is routine for
pharmacological studies.

Clustering Antipsychotics Based on Receptor
Affinities

The minimum pKi value was 4. This value (4) was subtracted
from all pKi values to give a floor score of 0. Next, in case that a
drug was an agonist or partial agonist at a given receptor [as
reported in earlier reviews (7)], the pKi value for that drug-
receptor combination was multiplied by 21 to account for
the functionally inverse effect. Without this inversion, there
would be no distinction between agonists and antagonists.

Probabilistic principal component analysis (PPCA) was then
used to impute any missing pKi values (19). Then, the adjusted
pKi values for all antipsychotics were Pearson correlated with
one another to produce a correlation matrix. In this correlation
matrix, a high correlation coefficient between 2 antipsychotics
indicates that they share a similar receptor profile. This
approach has a similar effect to normalizing for D2 pKi (18),
thereby accounting for the dosing differences between anti-
psychotics. The Louvain clustering algorithm was then used to
group antipsychotics with similar receptor profiles into distinct
groups (20).

Characterizing the Relationship Between Receptor
Profiles, Categorization Schemes, and Clinical
Effects

To characterize the receptor profile of the antipsychotic clus-
ters identified above, we performed a PPCA of the receptor
profiles, then calculated the mean component loading for the 3
components explaining the greatest proportion of variance for
each cluster.

Relative side-effect burden (magnitude or relative risk) for
13 common adverse effects (weight gain, Parkinsonism, aka-
thisia, anticholinergic effects, sedation, hyperprolactinemia,
corrected QT interval prolongation, orthostatic hypotension,
dystonia, tardive dyskinesia, seizure, dyslipidemia, and dys-
glycemia) and efficacy (in terms of positive, negative, and total
symptoms) of antipsychotics included in the PPCA were
obtained from an umbrella review of network meta-analyses
and clinical guidelines for the acute treatment of schizo-
phrenia (see the Supplement). For each clinical measure, we
characterized the mean for each of the 4 receptor-defined
clusters.

We next examined whether complete receptor binding
profiles and receptor profile–based groupings (clusters) were
predictive of clinical profiles and compared them with existing
classification schemes. We developed a prediction model us-
ing training data consisting of all but one of the available an-
tipsychotics. Within the training data, any missing clinical
effect values were imputed using PPCA. In this model, either
the receptor profiles (number of predictor variables, D = 42),
the receptor profile–defined groupings (D = 4), NbN-defined
groupings (D = 7), or a typical/atypical/partial agonist
grouping (D = 3) were used as the predictor variables, while the
side effect and efficacy scores (k = 16) were used as the target
variables. The NbN groupings were defined on the basis of
their mode of action as reported at https://nbn2r.com/authors.
A definitive typical/atypical distinction is not available, with
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most drugs (other than clozapine) classified according to the
year of discovery.

We used partial least squares regression, given this is a
model well suited to using multiple features to simultaneously
predict multiple targets. We then used the partial least square
model that had been fitted on the training data to predict
clinical effects for the single antipsychotic not included in the
training data. We then calculated the median of the absolute
error between predicted and observed clinical effect scores for
this antipsychotic. We repeated this across all 27 antipsy-
chotics and calculated the median error score across the 27
antipsychotics to provide a summary estimate of predictive
ability for each of the 4 methods of categorization. We used
permutation testing to assess statistical significance of the
prediction by comparing the observed median error score with
a null distribution of median error scores generated by shuffling
antipsychotics in the training data 500 times to break the
connection between receptor and clinical effect profile. Ana-
lyses were conducted using the python programming lan-
guage, with the NumPy package used for most of the linear
algebra, scikit-learn for the partial least squares prediction
modeling, and seaborn for figure generation (21–23). Code and
data for all analyses are available at https://github.com/rob-
mccutcheon/antipsychotic_pca_paper.
RESULTS

Receptor Affinities

In total, 97,599 Ki values were extracted. Of these, 5304 were
related to antipsychotics, of which 3325 reported on binding to
human tissue. Data regarding 67 distinct receptors and 29
different antipsychotics were reported, but this was reduced to
42 receptors and 27 antipsychotics when the requirement for
$5 datapoints for each receptor and drug were applied (2
B

drugs and 13 receptors were removed) (see the Supplement
for details). The pKi values are displayed in Figure 1.

Clustering Antipsychotics Based on Receptor
Affinities

Antipsychotics were clustered based on the similarity of their
receptor affinity profiles. Four clusters were identified
(Figure 2).

Characterizing Cluster Receptor Profiles

To summarize the receptor affinity profile of each cluster, we
examined the mean loading for the 3 PPCA components
explaining the greatest variance (Figure 3). These 3 compo-
nents explained 65% of the variance, with the next largest
component contributing 9%. The first cluster (chlorpromazine,
clozapine, flupenthixol, loxapine, olanzapine, quetiapine, thio-
rdiazine, and trifluoperazine) was characterized as muscarinic
given its strong negative loading on the third component,
which reflected antagonism at the muscarinic M2–M5 receptors
(but either agonism or weak antagonism at the M1 receptor).
The second cluster (aripiprazole, asenapine, brexpiprazole,
cariprazine, lurasidone, and ziprasidone) was characterized as
adrenergic with low dopaminergic antagonism and had a
strong positive loading on the third component and a negative
loading on the second component, reflecting a lack of
muscarinic or serotonergic antagonism but significant adren-
ergic antagonism and dopamine D2 partial agonism. The third
cluster (fluphenazine, haloperidol, iloperidone, paliperidone,
perphenazine, risperidone, sertindole, thiothixene, and zote-
pine) was characterized as serotonergic-dopaminergic due to
its strong positive loading on the second component, which
reflects serotonergic and dopaminergic antagonism. The
fourth cluster (amisulpride, molindone, pimozide, and sulpiride)
was characterized as dopaminergic given its strong negative
Figure 1. Antipsychotic pKi values. Larger pKi
values indicate greater affinity of the drug to the
receptor. For visualization purposes, data here
represent pKi values with no adjustments made
based on whether a drug is an agonist or antagonist,
whereas subsequent analyses make this adjust-
ment. Gray squares indicate an absence of data.
ADRA, alpha-adrenergic receptor; ADRB, beta-
adrenergic receptor; CHRM, muscarinic acetylcho-
line receptor; DR, dopamine receptor; HERG, human
ether-a-go-go-related gene; HR, histamine receptor;
HTR, serotonin receptor; NAT, noradrenaline trans-
porter; SL6A3, dopamine transporter; SL6A4, sero-
tonin transporter; SLC6, solute carrier family 6
transporter.
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Figure 2. Antipsychotic clustering based on re-
ceptor profiles. The color of each small square in-
dicates the strength of correlation between the
receptor profile of the antipsychotic in the corre-
sponding row and column (e.g., one can see that
pimozide shows a similar receptor profile to ami-
sulpride but not to flupentixol). The grouping out-
lined by the blue lines reflects the result of a
clustering algorithm that aims to group highly
correlated drugs together.
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loading on the first component, which reflects relatively pure
dopaminergic antagonism without adrenergic effects.

Clinical Profiles of Receptor-Defined Taxonomies

We then characterized how these principal components of
receptor affinity correlated with clinical effects (Figure 4A).
Drugs with a positive loading for the first principal component
are more likely to cause metabolic and cholinergic side effects
but have a low propensity for Parkinsonism, akathisia, and
hyperprolactinemia; they also show the greatest efficacy for
total symptoms. Drugs with a positive loading for the second
component show the opposite pattern, with a relative pro-
pensity to cause Parkinsonism, akathisia, and hyper-
prolactinemia over metabolic effects; they also show the
greatest efficacy for positive symptoms. A positive loading for
the third component reflects a propensity for a generally low
all-round side-effect burden and also less efficacy in terms of
total, positive, and negative symptoms.

We also looked at the mean clinical effect scores for the
receptor-defined clusters (Figure 4B). We found that cluster 1
was associated with anticholinergic side effects, postural hy-
potension, and metabolic side effects; cluster 2 was associ-
ated with a globally low side-effect burden; cluster 3 was
associated with a globally moderate side-effect burden; and
cluster 4 was associated with Parkinsonism, akathisia, and
hyperprolactinemia. Clusters 1 and 4 were more efficacious
than clusters 2 and 3.

Finally, we examined which of the 4 classification
methods (the receptor profile–defined grouping described
here, complete receptor binding profiles, NbN-defined
grouping, and atypical/typical/partial agonist-defined group-
ings) (Figure 5A) could best predict out-of-sample clinical
effect profiles (Figure 5B). Only the receptor-defined clusters
described in this article produced a statistically significant
4 Biological Psychiatry - -, 2023; -:-–- www.sobp.org/journal
prediction (p = .008), in contrast to the typical/atypical/partial
agonist (p = .06), complete receptor profile (p = .30), or NbN
(p = .90) groupings.

DISCUSSION

This article illustrates how receptor profiles can be used to
classify antipsychotics in a data-driven fashion. Furthermore,
we demonstrate that the groupings derived from this approach
can predict clinical effect profiles.

These findings have several implications. An unbiased
pharmacologically driven approach to classification has a priori
advantages in that, by definition, it reflects pharmacology and
does not require decisions regarding which receptors to pri-
oritize. In addition, we have demonstrated how receptor pro-
files can be used to quantitatively estimate clinical effects,
which has potential uses when evaluating compounds that
have not yet undergone clinical testing. Furthermore, treatment
side effects are key factors that people with schizophrenia and
their clinicians consider when making prescription decisions
(24), and reducing side effects of antipsychotics is central to
initiatives to improve morbidity and mortality rates in this pa-
tient group (25). Although treatment decisions based on the
side-effect burden may be best made at the individual drug
level, we have identified groups of antipsychotics with similar
receptor binding signatures and either globally low or moder-
ate side-effect burdens; this has the potential to inform clinical
practice. For example, we identified a group of antipsychotics
with a low side-effect risk that included all licensed partial
agonists alongside ziprasidone and its structural analog lur-
asidone. Previous studies and clinical guidance documents
have recommended that this same group of antipsychotics be
selected preferentially when there is a desire to avoid meta-
bolic side effects (5,16); this is consistent with our data-
informed classification scheme, but our scheme extends this,
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Figure 3. Characterizing receptor-defined anti-
psychotic clusters. The numbers 1, 2, and 3 refer to
the first 3 principal components. The bar chart
shows that, e.g., cluster 4 has a large negative
loading for component 1. The heatmap shows how
the components relate to the receptor profile. The
large negative loading for component 1 in cluster 4
indicates that the drugs in this cluster will tend to act
as relatively strong antagonists at HTR1 and CHRM1
and weak antagonists (or even agonists) at ADRA2B
and ADRA2C. DA, dopamine; PCA, principal
component analysis; QTc, corrected QT interval.
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indicating that they are preferential in terms of other side ef-
fects as well. Thus, guidelines and clinicians may recommend
a drug from this group as the first-line treatment, given the
overall favorable side-effect profile and as a rational choice to
switch to for patients experiencing metabolic side effects from
a drug not in this class. In contrast, if efficacy is paramount,
then it may be preferable to consider clusters 1 or 4, with the
decision between these dependent on whether hyper-
prolactinemia/movement or metabolic side effects are a
greater concern.

In terms of treatment effectiveness, it is unclear how to
select a second antipsychotic in the case of initial nonre-
sponse. There is evidence that switching to a pharmacologi-
cally distinct compound produces clinical benefits (13).
Although current guidelines do recommend switching to a
different antipsychotic class prior to considering clozapine, this
guidance is often limited to switching between atypical/typical
agents (14). The current classification separates drugs into
classes as pharmacologically distinct from one another as
possible, potentially providing some guidance as to sensible
B

switching choices when changing medication secondary to
lack of effectiveness. While antipsychotic polypharmacy
should typically be avoided, the classification could also be of
use in suggesting more effective antipsychotic combination
strategies in cases in which other options have been exhaus-
ted (26,27). Further work definitively testing whether these
groupings reflect an optimal switching strategy is warranted.

Despite these advantages, alternative taxonomies offer
benefits in other aspects. For example, the NbN approach
encompasses psychopharmacological treatments as a whole,
as opposed to antipsychotics only. Future work could similarly
extend the current approach to a wider range of compounds. A
drawback of the NbN approach is the necessary limitation to
covering an incomplete range of receptor systems. While this
has the benefit of keeping the number of systems manageable
for the user, it means that important facets are neglected. For
example, histaminergic and muscarinic affinities do not feature
in the NbN approach to classifying antipsychotics (28). This is
a significant limitation given the central role of the histamin-
ergic system in determining the propensity of a drug to induce
iological Psychiatry - -, 2023; -:-–- www.sobp.org/journal 5
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Figure 4. Characterizing clinical profiles of principal components (PCs)
and receptor-defined clusters. (A) Correlation coefficients across anti-
psychotics between principal component loadings illustrated in Figure 3
and their clinical effects. Red indicates that a drug with a strong posi-
tive loading for that component is likely to be associated with the effect
in question. (B) Mean scores for antipsychotic clusters illustrated in
Figure 2, a darker color indicates that the cluster is associated with
greater severity of the side effect (or greater efficacy for symptom mea-
sures) in question. DA, dopamine.
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weight gain and sedation (28,29) and the fact that muscarinic
mechanisms underlie the efficacy of several antipsychotics
currently in phase 3 trials (30,31). The fact that histaminergic
affinities contribute to the clustering approach used in the
current analysis may therefore be one of the factors that
improve its ability to predict clinical effect profiles compared
with NbN. There is not, however, a clean delineation between
receptor types and the data-driven clusters. For example,
medications in both clusters 1 (e.g., olanzapine, quetiapine,
and clozapine) and 3 (zotepine and thiothixene) show relatively
high levels of H1 receptor affinities. In many situations, both
clinically and in research, it will be preferable to consider
compounds individually and select a drug based on its unique
clinical or receptor profile as opposed to its membership of any
grouping. In some respects, the present findings do not
necessarily identify an optimal clustering but highlight the
shortcomings of existing taxonomies.

In the current analysis, we attempt to move away from
preexisting biases by using an agnostic classification algo-
rithm. However, to obtain more fully unbiased results, one re-
quires unbiased data in addition to an unbiased algorithm. The
database chosen does not reflect an entirely systematic survey
of receptor affinities but, to an extent, reflects research in-
terests. This means that for some drugs, such as lurasidone,
flupentixol, and sulpiride, there is a paucity of data, although
Figure 5. Antipsychotic categorization schemes
and prediction of clinical effects. (A) Antipsychotics
classified according to a typical/atypical/partial
agonist split, neuroscience-based nomenclature
(NBN), and the receptor-defined clusters illustrated
in Figure 2. (B) The curves illustrate the permutation-
generated null distribution. Vertical lines indicate the
observed median error for predicting out-of-sample
clinical effect profiles (a smaller value reflects a
more accurate prediction). The data-driven and
typical/atypical groupings produce a statistically
significant prediction of overall clinical profile
compared with the null distribution.

http://www.sobp.org/journal


Data-Driven Taxonomy for Antipsychotic Medication
Biological
Psychiatry
for the rest, the database is relatively comprehensive. How-
ever, while this is a potential limitation of our approach, it is
even more so for the NbN approach because it uses a subset
of known receptor affinities. Moreover, it is partially mitigated
by the fact that drugs typically undergo standard receptor af-
finity screening. There are also potential biases in the clinical
data used in the partial least squares analysis. The effect sizes
are obtained from clinical trials that in many cases used
significantly higher doses in trials of typical compared with
atypical drugs. This means that in some cases, the side effect
magnitude may reflect these dosing practices in addition to the
pharmacodynamic properties of the drug. This will, in turn, lead
to a potential overestimation of the ability of the typical/atyp-
ical grouping to predict side effects (32,33).

Our approach can be readily updated with new findings as
they emerge, and we have made the required code openly
available. However, the optimal cluster solution may change
with the addition of drugs, particularly when considering
medications with entirely novel mechanisms of action (30,34).
Similarly, for drugs currently missing significant amounts of
data, the addition of data may change the assigned cluster or
the entire cluster solution. The relatively small sample size of
antipsychotics with available clinical data means that not only
the cluster solution may be subject to subsequent change but
also that its prediction of effects should not be taken as clear
evidence of superiority. It may often be preferable to consider
compounds as unique rather than as part of any grouping.

One of the main areas in which our methods could
potentially be improved is the accounting for additional
pharmacological properties. Our approach focuses on rela-
tive receptor affinities; therefore, while this adjusts for dosing
differences, it does not consider that active metabolites may
have quite different pharmacodynamic effects than the
parent compound. The fact that functional assays were not
used also means that the degree of partial agonism could
not be quantified, and only a binary categorization was used.
Some receptors that may have clinically relevant effects did
not have sufficient data available to be included in the
analysis. Additionally, all binding was quantified using in vitro
assays and in vivo values may differ. The fact that com-
pounds differ in their ability to cross the blood-brain barrier
is also not accounted for, which means that the relationship
between lower permeability and greater peripherally medi-
ated side effects will not be reflected. Finally, in the cases in
which individual receptors mediate the majority of an effect
(e.g., human ether-a-go-go-related gene and corrected QT
interval prolongation), it may be that the importance of the
receptor becomes lost in the analysis. Our examination of
the association between taxonomies and clinical effects was
solely based on data obtained from trials in individuals with
schizophrenia. Antipsychotics are, however, also used in
other disorders, and, at least in terms of efficacy, they
demonstrate interdrug differences distinct from those
observed in trials of psychotic disorders (6,35,36).

Future work may consider a data-driven approach to clus-
tering all neuropsychiatric medication, as opposed to medi-
cations used solely in the treatment of psychosis. To build
upon the current approach, clinical studies could evaluate the
benefits of the classification scheme in guiding switching de-
cisions, while the predictive model may be of use in identifying
B

ideal receptor profiles that maximize efficacy while minimizing
side effects. Additional analyses could also attempt to identify
whether certain receptor profiles display disorder-specific
efficacy.

In conclusion, this study provides a pharmacological data-
driven approach to the classification of antipsychotic medi-
cation. We derived 4 groups of antipsychotics with distinct
receptor, efficacy, and side-effect profiles. This approach re-
flects the pharmacological properties as closely as possible. It
also shows considerable mapping to clinical effect profiles,
suggesting that it may hold some advantages over existing
approaches. This data-driven taxonomy promises to benefit
both patients and researchers, guiding appropriate treatment
and drug development in the future.
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