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Extensive neuroimaging research has attempted to identify neural correlates and pre-
dictors of decision impulsivity. However, the nature and extent of decision impulsivity-
brain association have varied substantially across studies, likely due to small sample
sizes, limited image quality, different imaging measurement selections, and non-specific
methodologies. The objective of this study was to develop a reliable predictive model of
decision impulsivity-brain relationship in a large sample by applying connectome-based
predictive modeling (CPM), a recently developed machine learning approach, to whole-
brain functional connectivity data (“neural fingerprints”). For 809 healthy young partici-
pants from the Human Connectome Project, high-quality resting-state functional MRI data
were utilized to construct brain functional connectome and delay discounting test was
used to assess decision impulsivity. Then, CPM with leave-one-out cross-validation was
conducted to predict individual decision impulsivity from whole-brain functional con-
nectivity. We found that CPM successfully and reliably predicted the delay discounting
scores in novel individuals. Moreover, different feature selection thresholds, parcellation
strategies and cross-validation approaches did not significantly influence the prediction
results. At the neural level, we observed that the decision impulsivity-associated func-
tional networks included brain regions within default-mode, subcortical, somato-motor,
dorsal attention, and visual systems, suggesting that decision impulsivity emerges from
highly integrated connections involving multiple intrinsic networks. Our findings not only
may expand existing knowledge regarding the neural mechanism of decision impulsivity,
but also may present a workable route towards translation of brain imaging findings into
real-world economic decision-making.
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1. Introduction

Impulsivity is defined as a tendency to engage in rash be-
haviors or as a behavior that occurs without careful deliber-
ation (Hollander & Rosen, 2000). Accumulating evidence has
suggested that substantial impulsivity is a common charac-
teristic of psychiatric disorders such as drug abuse (Perkins &
Freeman, 2018), pathological gambling (Wiehler & Peters,
2015), tobacco addiction (Green & Lawyer, 2014), and
attention-deficit/hyperactivity disorder (ADHD) (Costa Dias
et al., 2015). Decision impulsivity or intertemporal choice re-
fers to a phenomenon that people on average have the ten-
dency to favor the immediate smaller benefit rather than
larger rewards in the future (Lv et al.,, 2019). One of the most
commonly used neuropsychological measures of decision
impulsivity is delay discounting task, also known as temporal
discounting, which describes the undervaluing of rewards
that are delayed in time (Green & Myerson, 2004), with greater
delay discounting reflecting greater decision impulsivity.
Therefore, the delay discounting test has provided a useful
framework for investigating abnormal decision impulsivity
and its neural basis in some clinical conditions, such as ADHD
(Costa Dias et al., 2013, 2015), obesity (Kishinevsky et al., 2012;
van der Laan, Barendse, Viergever, & Smeets, 2016), anorexia
nervosa (Decker, Figner, & Steinglass, 2015; Wierenga et al.,
2015), nicotine/cocaine/methamphetamine  dependence
(MacKillop et al., 2012; Meade, Lowen, MacLean, Key, & Lukas,
2011; Schwartz et al., 2010), and suicide attempts in late-life
depression (Dombrovski et al., 2012).

Linking human behavior to brain structure and function is
a central question in systems neuroscience. The unbiased
assessment of brain structure and function with advanced
neuroimaging techniques and novel analysis approaches has
linked inter-individual variability in the brain to individual-
ized human behavior and cognition (Kanai & Rees, 2011). As a
consequence, extensive neuroimaging research has attemp-
ted to explore neural correlates of decision impulsivity in
normal subjects. For examples, previous studies have found
significant correlations between decision impulsivity and
brain structure by using structural magnetic resonance im-
aging (MRI) to measure gray and white matter morphology
(Bernhardt et al., 2014; Bjork, Momenan, & Hommer, 2009;
Boes et al., 2009; Cho et al., 2013; Drobetz et al., 2014; Ho,
Koeppel, & Barry, 2016; Mackey et al.,, 2017; Pehlivanova
et al.,, 2018; Tschernegg et al., 2015; Wang et al,, 2017; Yu,
2012) and using diffusion MRI to evaluate white matter
integrity (Achterberg, Peper, van Duijvenvoorde, Mandl, &
Crone, 2016; Hampton, Alm, Venkatraman, Nugiel, & Olson,
2017; Han et al., 2018; Hanggi et al., 2016; Olson et al., 2009;
Peper et al., 2013; van den Bos, Rodriguez, Schweitzer, &
McClure, 2014). There are also a large number of studies
identifying associations between decision impulsivity and
brain function by using functional MRI (fMRI) to measure task-
induced brain activation (Ballard & Knutson, 2009; Banich
et al., 2013; Benningfield et al., 2014; de Water et al., 2017,
Hariri et al.,, 2006; Ludwig et al.,, 2015; Luerssen, Gyurak,
Ayduk, Wendelken, & Bunge, 2015; Luo, Ainslie, Pollini,
Giragosian, & Monterosso, 2012; Simon et al.,, 2015; Wang
et al.,, 2014; Weber & Huettel, 2008, Wittmann, Leland, &

Paulus, 2007), resting-state regional neural activity (Lv et al,,
2019; Wang et al, 2017), functional connectivity
(Anandakumar et al., 2018; Calluso, Tosoni, Pezzulo, Spadone,
& Committeri, 2015; Han et al., 2013; Hanggi et al., 2016;
Holmes et al., 2018; Li et al., 2013; van den Bos et al., 2014;
van den Bos, Rodriguez, Schweitzer, & McClure, 2015; Wang
et al,, 2017) and functional networks (Chen, Guo, & Feng,
2017; Chen, Guo, Suo, & Feng, 2018; Chen, Hu, Chen, & Feng,
2019; Elton, Smith, Parrish, & Boettiger, 2017). However,
these prior studies have yielded inconsistent findings with the
exception of the prefrontal cortex and striatum. Moreover,
existing literature has focused largely on establishing decision
impulsivity-brain relationship in a correlative manner and
placed less emphasis on decision impulsivity prediction using
machine learning methods.

The integration of easily accessible brain imaging mea-
sures together with powerful machine learning approaches
has provided a step toward individualized prediction of deci-
sion impulsivity (Chen, Guo, Zhang, & Feng, 2019; Li et al.,
2013; Lv et al., 2019; Wang et al., 2016; Zha et al., 2019). How-
ever, the predictive ability has varied substantially across
studies, which is likely due to limited statistical power from
relatively small sample sizes, limited image quality, different
neuroimaging measurement selections, and non-specific
machine learning methodologies.

In the Human Connectome Project (HCP) dataset, delay
discounting-measured decision impulsivity and high-quality
resting-state fMRI data were publicly available for a large
sample of healthy young adults (Van Essen et al., 2012, 2013).
Among various neuroimaging measures, resting-state func-
tional connectivity has been considered a unique “neural
fingerprint” that can accurately identify specific subjects from
a large group (Finn et al., 2015; Xu et al., 2016). With respect to
methodology, connectome-based predictive modeling (CPM)
is a recently developed machine learning approach for
generating brain-behavior models from whole-brain func-
tional connectivity profiles (Shen et al, 2017). Here, by
applying CPM to the large-scale cohort HCP data, we aimed to
examine whether decision impulsivity can be effectively and
reliably predicted from an individual’s unique pattern of brain
connectivity.

2. Materials and methods
2.1. Participants and resting-state fMRI data

812 participants were selected from the HCP “PTN”
(Parcellation + Timeseries + Netmats) dataset (http://www.
humanconnectome.org). These participants are healthy
young adults within an age range of 22—37 years, which cor-
responds to a period after the completion of major neuro-
development and before the onset of neurodegenerative
changes (Van Essen et al., 2012). Each subject underwent four
resting-state fMRI scans where subjects were instructed to
keep their eyes open and move as little as possible (14.4 min
per scans). Data from the 812 subjects were reconstructed
using an improved version of the data reconstruction software
(referred to as “recon2”). The four fMRI scans were concate-
nated into continuous time series consisting of 4800 time
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points at a repetition time of .72 sec. The full details regarding
the sample and data acquisition have been reported in prior
publications (Van Essen et al., 2012, 2013). The HCP scanning
protocol was approved by the Institutional Review Board of
Washington University in St. Louis, MO, USA. Written
informed consent was obtained from each participant.

2.2.  fMRI data preprocessing and construction of
functional connectome

All resting-state fMRI data were minimally-preprocessed with
echo planar imaging gradient distortion correction, motion
correction, field bias correction, spatial transformation and
normalization into a common Montreal Neurological Institute
space (Glasser et al., 2013), and artifact removal using inde-
pendent component analysis (ICA) + FIX (Salimi-Khorshidi
et al.,, 2014). For functional network connectivity analysis,
network nodes can be defined by using existing atlases based
on cytoarchitecture or anatomy. However, a potential pitfall in
using such atlases is that the mean time series of a node may
not represent any of the constituent time series if different
functional areas are included within a single node (Shen,
Tokoglu, Papademetris, & Constable, 2013). Therefore, group-
level ICA was used here to define the whole-brain network
nodes in a data-driven fashion, which are considered more
functional homogeneous and may be better at capturing in-
dividual differences of real functional boundaries than those
defined by existing atlases (Calhoun, Adali, Pearlson, & Pekar,
2001). The group-level ICA parcellation was performed using
FSL’s MELODIC tool (Beckmann & Smith, 2004) and spatial-ICA
was applied at several different dimensionalities (15, 25, 50,
100, 200, and 300). The dimensionality determines the number
of ICA components; a higher number typically means that the
significant areas within the spatial component maps will be
smaller. Given that larger spatial components lack regional
specificity, we used 100, 200 and 300 group-ICA components to
define brain network nodes. That is, 200 components were
used for the main analyses in light of their moderate spatial
extent, and 100 and 300 components were used for the vali-
dation analyses. For each node, one representative time series
was derived by mapping the corresponding ICA spatial map
onto each participant’s fMRI data using the standard “dual-
regression stage-1” approach, in which the ICA map was used
as a spatial regressor against the full time series data. This
resulted in 200 nodes’ time series that can be used to construct
functional connectome at the individual level. Specifically, the
partial temporal correlation coefficients between the time
series of all possible pairs of nodes were computed, which
estimates direct connection strengths better than achieved by
Pearson’s correlation. The resultant correlation values were
converted into z statistics with Fisher’s r-to-z transformation,
resulting in a symmetric 200 x 200 connectivity matrix in
which each element represents the strength of connection
between two nodes (hereafter referred to as an edge).

2.3. Decision impulsivity assessment
Decision impulsivity was assessed using the delay discount-

ing measure, the schematic representation of which is shown
in Fig. 1. A detailed description of the delay discounting
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Fig. 1 — Schematic representation of the delay discounting
design.

measure can be found in HCP_S500_Release_Refer-
ence_Manual.pdf on the HCP website. In brief, participants are
presented with two choices on each trial, i.e., a smaller
amount “today” or a larger amount at a later point in time.
Participants make choices at each of 6 time periods (1 month,
6 months, 1 year, 3 years, 5 years and 10 years) and for two
delayed amounts ($200 and $40,000). For each combination of
time period and delayed amount (e.g., $200 in 1 month or
$40,000 in 6 months), participants make 5 choices, and the
value that would have been used for the immediate amount in
a 6th choice is taken as the indifference point for that condi-
tion. The participants make all five choices for a particular
combination of time period and delayed amount before
moving on to the next combination of time period and delayed
amount. Finally, area-under-the-curve (AUC) measures for the
two amounts (DDisc_AUC 200 and DDisc_AUC_40k) are
computed to provide valid and reliable indices of how steeply
an individual discounts delayed rewards (Anandakumar et al.,
2018; Chen, Hu, et al., 2019; Jimura, Chushak, & Braver, 2013;
Myerson, Green, & Warusawitharana, 2001); these variables
were selected due to their good psychometric properties. A
smaller AUC reflects greater delay discounting, i.e., a greater
decision impulsivity. We used the AUC measures to search the
edges containing information relevant for the subsequent
prediction analyses. Only 809 subjects (407 female) were used
in this study because 3 participants were excluded due to
incomplete delay discounting data.

2.4. Connectome-based predictive modeling

CPM is a recently developed approach for identifying brain
networks associated with a behavioral variable of interest
from whole-brain functional connectivity, which can be then
used to predict novel participants’ behavior at the single-
subject level (Shen et al.,, 2017). Here, CPM was performed
using previously validated custom MATLAB scripts which are
freely available online (https://www.nitrc.org/projects/
bioimagesuite/). Overall, inputs to CPM were whole-brain
functional connectivity matrices and behavioral data (i.e.,
DDisc_AUC_200 and DDisc_AUC_40k scores). First, the input
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data were divided into a training set and a testing set. In the
training set, each edge in the connectivity matrices was
correlated with the behavior data using Pearson’s correlation
analyses with a statistical significance threshold of p < .01 to
identify positive and negative predictive networks. For posi-
tive networks, edges were significantly positively associated
with the behavioral data; for negative networks, edges were
significantly negatively associated with the behavioral data.
Next, a single-subject summary value was created by sum-
ming the significant edge weights in each network. Then, a
predictive model was built that assumes a linear relationship
between the single-subject summary value of connectivity
data (independent variable) and the behavioral variable
(dependent variable). In the testing set, the summary value
was calculated for each subject and was then input into the
predictive model. The resulting value was the predicted
behavioral variable for the current test subject. Here, we
employed a leave-one-out cross-validation analysis (i.e., in-
ternal validation) to test the prediction performance. Briefly,
one subject was left out and all other subjects were used to
build the predictive model; the left-out subject’s predicted
behavioral variable was generated by the predictive model;
this step was repeated in an iterative manner until all subjects
had a predicted behavioral variable. Model performance was
assessed by the magnitude and statistical significance of the
Pearson’s correlation between actual and predicted behav-
ioral values. The statistical significance of the correlation be-
tween actual and predicted behavioral values was assessed
using permutation testing. To generate an empirical null dis-
tribution of the test statistic (i.e., prediction correlation
values), we randomly shuffled the correspondence between
connectivity matrices and behavioral variables 5,000 times
and reran the CPM pipeline using the shuffled data. Based on
the null distribution, the p value for the leave-one-out pre-
diction was calculated as the proportion of sampled permu-
tations that were greater than or equal to the true prediction
correlation, i.e., p value = the number of permutations that
generated correlation values greater than or equal to the true
correlation values/5000. Statistical significance was set at
p < .05.

2.5. Validation analyses

The following procedures were conducted to further evaluate
the reproducibility of our findings. First, a significance
threshold of p < .01 was used to select edges that were posi-
tively and negatively correlated with decision impulsivity
scores. To determine whether our main results depended on
the choice of different edge selection thresholds, we reran the
CPM analyses using two other thresholds (i.e., p < .05 and .001)
to identify edges significantly related to decision impulsivity
scores. Second, considering that different parcellation stra-
tegies may influence the results, we constructed functional
connectome using two other parcellation schemes (i.e., 100
and 300 group-ICA components) and repeated the entire an-
alyses. Third, we also calculated delay discounting rate (k)
according to the hyperbolic function (Green & Myerson, 2004).
As the original k was not normally distributed, a log10 trans-
formation was applied (log k) (Lv et al., 2019; van den Bos et al.,
2014; Wang et al,, 2014). Then, the CPM analyses were

conducted again to predict the log k. Finally, 10-fold and 20-
fold cross-validation analyses were used to further test the
CPM prediction performance in novel subjects.

3. Results
3.1. Prediction performance of decision impulsivity
scores

The average scores were .52 (SD = .28, ranging from .02 to .98)
for DDisc_AUC_40k and .27 (SD = .21, ranging from .02 to .98)
for DDisc_AUC_200. The CPM models, based on functional
connectivity within both the positive and negative networks,
reliably predicted DDisc_AUC_40k scores (positive network:
r =.248, 95%CI .180—.313, p = .0162; negative network: r = .237,
95%CI .174—.303, p = .0188) (Fig. 2A and B). However, DDis-
c_AUC_200 scores were successfully predicted from func-
tional connectivity within the positive network (r = .228, 95%
CI .171-.291, p = .0100) (Fig. 3A), but not that within the
negative network (r =.188, 95%CI .123—.249, p = .3420) (Fig. 3B).

3.2. Network anatomy

Because of the nature of cross-validation, it is likely that a
slightly different set of edges will be selected as features in each
iteration of the cross-validation. For illustrative purpose, we
defined final decision impulsivity scores-relevant networks
using data from all 809 training subjects. Overall, network
anatomies for the networks associated with decision impul-
sivity scores were complex and included edges between nodes
across the brain. For DDisc_AUC_40k scores, the positive and
negative networks consisted of 475 and 364 edges, respectively
(Fig. 2C and D). Highest-degree nodes (i.e., nodes with the most
edges) for the positive network included nodes belonging to
somato-motor network (SMN) (Fig. 2E); highest-degree nodes
for the negative network included nodes belonging to default
mode network (DMN), subcortical network (SN) and SMN
(Fig. 2F). For DDisc_AUC_200 scores, the positive and negative
networks consisted of 318 and 262 edges, respectively (Fig. 3C
and D). Highest-degree nodes for the positive network included
nodes belonging to visual network (VN), dorsal attention
network (DAN), and SMN (Fig. 3E); highest-degree nodes for the
negative network included nodes belonging to DMN, VN, and
cerebellum (Fig. 3F).

3.3. Validation analysis

First, the prediction results derived from different edge se-
lection thresholds are shown in Table S1. At the threshold of
p < .05, we found that the prediction performances of decision
impulsivity scores were similar to those at the threshold of
p < .01, i.e., CPM produced good prediction for both DDis-
c_AUC_40k and DDisc_AUC_200 scores. At the threshold of
p < .001, however, the predictive ability became marginally
significant for DDisc_AUC_40k scores and even non-
significant for DDisc_AUC_200 scores. Second, we found that
our main results were largely reproduced after considering
the effects of different parcellation strategies, although there
was a non-significant trend for DDisc_AUC_200 prediction
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positive and negative networks. (C) and (D) High-degree nodes (degree > 6, larger spheres indicate nodes with higher
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using 300 group-ICA components (Table S2). Third, the CPM
models yielded a reliable prediction of the log k that was
identical to that of the AUC measures (Fig. S1). Finally, when
using 10-fold and 20-fold cross-validation analyses, the pre-
diction results of decision impulsivity scores remained un-
changed (Table S3).

4, Discussion

By applying a recently developed CPM approach to a large
sample of high-quality resting-state fMRI data from the HCP,
our study demonstrated that decision impulsivity measured
by delay discounting could be successfully and reliably pre-
dicted from an individual’s unique whole-brain functional
connectivity profile. Additionally, we found that the func-
tional connectivity underpinnings of decision impulsivity
involved multiple brain systems including DMN, SN, SMN,
DAN, and VN, supporting the notion that impulse control
emerges from complex information communication across
multiple resting-state networks.

There have been several neuroimaging studies using ma-
chine learning approaches to predict individual decision
impulsivity in healthy subjects. In a recent resting-state fMRI
study on college students, multivariate pattern analyses
revealed that regional homogeneity (ReHo) patterns in the
dorsal medial prefrontal cortex was a predictor of decision
impulsivity measured by delay discounting rate, with higher
ReHo predicting lower decision impulsivity (Lv et al., 2019). By
employing a combination of resting-state and task-based fMRI
data, Li et al. reported that resting-state functional connec-
tivity between brain regions activated during a delay dis-
counting task was able to predict individuals’ behavioral
impulsivity (Li et al., 2013). Another task-based fMRI study
showed that the whole-brain neural activity patterns during a
monetary intertemporal choice task could robustly predict
participants’ intertemporal decision-making with high accu-
racy (Chen, Guo, et al., 2019). Likewise, in the study by Zha
et al., local activity patterns in the ventromedial prefrontal
cortex and dorsolateral prefrontal cortex during a delay dis-
counting task were found to accurately predict intertemporal
choices in healthy participants (Zha et al, 2019). Using
multivariate pattern analysis and 10-fold cross-validation,
Wang and colleagues found that gray matter volume in the
frontal pole and middle frontal gyrus as well as resting-state
functional connectivity between the frontal pole and ventro-
medial prefrontal cortex was predictive of the discounting
rate in a delay discounting task (Wang et al., 2016). Compared
to these prior studies, the present study has several potential
advantages. First, the sample size represents the biggest
cohort to be used to predict decision impulsivity, which in-
creases the reliability of the results. Second, the high-quality
HCP fMRI data analyzed in this study have much better
spatial and temporal resolution. Third, we utilized a data-
driven approach to construct each subject’s whole-brain
functional network, which constitutes a unique “neural
fingerprint” allowing identification of individuals among a
pool of people (Finn et al., 2015; Xu et al., 2016). Moreover,
group ICA was used to define the whole-brain network nodes,
which are considered functional homogeneous and may be

better at capturing individual differences of real functional
boundaries than those defined by anatomical brain atlases
(Calhoun et al., 2001). Finally, compared with the machine
learning methods that were previously adopted to study
brain-decision impulsivity association, CPM is optimized for
whole-brain functional connectivity data and requires no a
priori selection of networks. The predictive power of CPM has
been demonstrated in studies of fluid intelligence (Finn et al.,
2015), attention (Rosenberg et al.,, 2016; Yoo et al., 2018) and
creativity (Beaty et al., 2018). Notably, the current observation
that DDisc_AUC_40k yielded higher predictability than DDis-
c_AUC_200 may be due to the fact that DDisc_AUC_40k scores
were more uniformly distributed from 0 to 1 than DDis-
c_AUC_200 scores, suggesting that a higher delayed amount
may have superior sensitivity in detecting inter-individual
decision impulsivity variation and its related neural
correlates.

We found that functional connectivity of DMN, SN and
SMN was correlated with delay discounting scores, suggesting
their crucial roles in decision impulsivity. DMN is preferen-
tially active when individuals are engaged in internally
directed cognition, such as mind-wandering, autobiograph-
ical memory retrieval, envisioning the future, mental simu-
lation, theory of mind reasoning, and creative cognition
(Buckner, Andrews-Hanna, & Schacter, 2008; Buckner &
DiNicola, 2019). DMN is thought to play a vital role in the or-
ganization and expression of preplanned, reflexive behaviors
that are critical to our existence in a complex world but
become impulsive when unconstrained by the social and
physical constraints of the environment (Raichle, 2015).
Medial prefrontal cortex is a core hub of DMN and its function
and structure are closely linked to decision impulsivity, which
has been consistently demonstrated by neuroimaging studies
focusing on analyses of task-induced brain activation, resting-
state regional neural activity, functional connectivity, cortical
thickness, gray matter volume, and white matter connectivity
(Bernhardt et al., 2014; Boes et al.,, 2009; Cho et al., 2013;
Hampton et al,, 2017; Han et al., 2013; Jimura et al., 2013; Liu
& Feng, 2012; Ludwig et al., 2015; Lv et al., 2019; Pehlivanova
et al,, 2018; Wang et al.,, 2016; Zha et al., 2019). By applying
ICA and large-scale brain network analysis to resting-state
fMRI data, investigators revealed that delay discounting
rates were correlated with both neural activity within DMN
(Chen et al.,, 2017) and functional network connectivity be-
tween DMN and cingulo-opercular network (Chen et al., 2018).
It is well established that the antagonistic connectivity be-
tween cognitive task-based networks and DMN has been
identified as “anti-phase network oscillations”, which could
influence one’s cognitive control performance in decision-
making without the need for top-down inhibition (Fornito,
Harrison, Zalesky, & Simons, 2012; Kelly, Uddin, Biswal,
Castellanos, & Milham, 2008; Marstaller, Burianova, &
Reutens, 2016). With regard to SN, converging evidence from
structural, functional and diffusion MRI studies has pointed
towards strong associations between decision impulsivity and
striatum morphology, activation patterns, functional and
anatomical connectivity (Achterberg et al., 2016; Benningfield
et al.,, 2014; Chen, Guo, et al., 2019; Cho et al., 2013; de Water
et al,, 2017; Drobetz et al., 2014; Elton et al., 2017; Hampton
et al,, 2017; Han et al., 2018; Hanggi et al., 2016; Hariri et al.,
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2006; Holmes et al., 2018; Jimura et al., 2013; Luerssen et al.,
2015; Peper et al., 2013; Simon et al., 2015; Tschernegg et al.,
2015; van den Bos et al, 2014; Weber & Huettel, 2008;
Wittmann et al., 2007), which are in line with our findings.
In addition, supplementary motor area is an important
component of SMN and its functional and structural connec-
tivity has been shown to respectively associate with delay
discounting measure (Anandakumar et al., 2018) and motor
impulsivity (Hampton et al., 2017), emphasizing the impor-
tance of SMN in the neural processes underlying impulsivity.

DAN is mainly composed of bilateral intraparietal sulcus
and frontal eye field and is principally involved in preparing
and applying goal-directed (top-down) selection for stimuli
and responses (Corbetta & Shulman, 2002; Fox, Corbetta,
Snyder, Vincent, & Raichle, 2006). VN is centered on medial
occipital cortex (lingual gyrus, cuneus and calcarine sulcus),
lateral occipital cortex, and fusiform gyrus, which are known
to be implicated in visual perception and processing, visual or
visuo-spatial attention and perception of emotion in facial
stimuli (Golarai et al., 2007; Grill-Spector & Malach, 2004).
Nonetheless, there is a paucity of previous literature demon-
strating a relationship between decision impulsivity and these
brain regions. The current findings of associations between
delay discounting and functional connectivity of DAN and VN
extend our perspective on the neural mechanism of decision
impulsivity, in support of the concept that a complex human
behavior usually emerges from information communication
across multiple resting-state networks rather than within or
between pairs of specific networks (Liegeois et al., 2019) as
individual functional connectivity fingerprinting is distributed
throughout the brain (Finn et al., 2015).

Our study has several limiting factors that should be
mentioned. First, the lack of data from an independent
sample hampers the possibility to perform an external vali-
dation analysis. Second, the HCP sample included healthy
young adults with a relatively narrow age range from 22 to 37
years, which might restrict generalizability to other age
ranges. Future investigations are encouraged to further
improve our understanding of the inter-individual decision
impulsivity differences from the lifespan perspective by
enrolling a cohort of subjects with a broader age range.
Finally, hypothetical instead of real money rewards were
used in the delay discounting test, which may influence our
interpretation to some extent. However, prior studies have
demonstrated that hypothetical and real rewards yield
similar results in both behavioral (Johnson & Bickel, 2002) and
functional neuroimaging paradigms (Bickel, Pitcock, Yi, &
Angtuaco, 2009).

In conclusion, our large sample study demonstrates that
resting-state functional connectivity patterns of whole-brain
large-scale networks can effectively and reliably predict
delay discounting. Our results also show that individual dif-
ferences in functional connectivity of default-mode, subcor-
tical, somato-motor, dorsal attention, and visual networks
contribute the most to inter-individual variability in delay
discounting. These findings not only may expand existing
knowledge regarding the neural mechanism of decision
impulsivity, but also may present a workable route towards

translation of brain imaging findings into real-world economic
decision-making. Moreover, our findings have significant im-
plications for the study of clinical conditions with impulsive
symptoms (e.g., ADHD, addiction, obesity, pathological
gambling, and suicide attempts), which might facilitate a
deeper understanding of the etiology and development of
impulsivity-related brain disorders as well as provide poten-
tial neural targets for their diagnosis and treatment.
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